Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization
نویسندگان
چکیده
We address the inverse problem of cosmic large-scale structure reconstruction from a Bayesian perspective. For a linear data model, a number of known and novel reconstruction schemes, which differ in terms of the underlying signal prior, data likelihood, and numerical inverse extra-regularization schemes are derived and classified. The Bayesian methodology presented in this paper tries to unify and extend the following methods: Wiener-filtering, Tikhonov regularization, Ridge regression, Maximum Entropy, and inverse regularization techniques. The inverse techniques considered here are the asymptotic regularization, the Jacobi, Steepest Descent, Newton-Raphson, Landweber-Fridman, and both linear and nonlinear Krylov methods based on Fletcher-Reeves, Polak-Ribière, and Hestenes-Stiefel Conjugate Gradients. The structures of the up-to-date highest-performing algorithms are presented, based on an operator scheme, which permits one to exploit the power of fast Fourier transforms. Using such an implementation of the generalized Wiener-filter in the novel ARGOsoftware package, the different numerical schemes are benchmarked with 1-, 2-, and 3dimensional problems including structured white and Poissonian noise, data windowing and blurring effects. A novel numerical Krylov scheme is shown to be superior in terms of performance and fidelity. These fast inverse methods ultimately will enable the application of sampling techniques to explore complex joint posterior distributions. We outline how the space of the dark-matter density field, the peculiar velocity field, and the power spectrum can jointly be investigated by a Gibbs-sampling process. Such a method can be applied for the redshift distortions correction of the observed galaxies and for time-reversal reconstructions of the initial density field.
منابع مشابه
A Measure-Theoretic Variational Bayesian Algorithm for Large Dimensional Problems
In this paper we provide an algorithm allowing to solve the variational Bayesian issue as a functional optimization problem. The main contribution of this paper is to transpose a classical iterative algorithm of optimization in the metric space of probability densities involved in the Bayesian methodology. The main advantage of this methodology is that it allows to address large dimensional inv...
متن کاملCOMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملInversion Bayésienne : illustration sur des problèmes tomographiques et astrophysiques
In this paper we provide an algorithm allowing to solve the variational Bayesian issue as a functional optimization problem. The main contribution of this paper is to transpose a classical iterative algorithm of optimization in the metric space of measures involved in the Bayesian methodology. Once given the convergence properties of this algorithm, we consider its application to large dimensio...
متن کاملVariational Bayesian Approximation with scale mixture prior for inverse problems: a numerical comparison between three algorithms
Our aim is to solve a linear inverse problem using various methods based on the Variational Bayesian Approximation (VBA). We choose to take sparsity into account via a scale mixture prior, more precisely a student-t model. The joint posterior of the unknown and hidden variable of the mixtures is approximated via the VBA. To do this approximation, classically the alternate algorithm is used. But...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008